Archives for category: trauma response

In some ways, a lasting traumatic brain injury (TBI) can be the worst kind of injury a person can endure in life. A TBI occurs when the brain is injured by force, and depending on the area affected, an individual is left with difficulty functioning and interacting with their environment. Our movement, sensation, communication, memory and learning is processed and controlled by the brain. When these functions are damaged, the interaction with our world is damaged as well.

Treating traumatic brain injuries may be one of the most emotionally and professionally difficult tasks. In an instant, the development of a person’s years of learning and communication can be erased from an injury such as a blow to the head, possibly leaving someone with the mental capacity and behavior of a toddler. Someone with a traumatic brain injury is often easily confused, unpredictable with their speech and actions, and occasionally aggressive as their frustration with communicating increases and appropriateness is inhibited. I recall treating an older gentleman who was the victim of violence, and just asking him to turn his head caused nausea, visual difficulty, and confusion in following just that simple command.

TBI’s can be divided into three main categories: mild, moderate, and severe. A mild injury often encompasses the kind of TBI that many people experience during their lifetime: a short-lasting concussion with possible loss of consciousness of up to a few minutes. Symptoms are often absent or mild, with some resulting nausea or headache. In a moderate injury, the force of the injury is greater and someone can be unconscious for up to 15 minutes with more lasting symptoms.

The third category is severe TBI’s, which can result from an event such as gunshot wound or the force of an explosion. Severe TBI’s cause permanent damage to the brain and leave lasting effects from which a person generally does not every fully recover. These chronic and lasting effects greatly affect a person’s ability to move, work, communicate with people, and function in society.

Until recently, treatment for people with chronic TBI’s was limited, but there is now hope for progress. A recent study by Chou et al introduced ISRIB, a drug tested in UCSF’s lab which was able to reverse the effects of a TBI in mice. This was done by inhibiting a stress response in the brain commonly associated with TBI. The integrated stress response has been shown to be chronically activated in someone with a TBI, affecting the hippocampus’ ability to store memory and influence healthy cognition. In addition, the drug was able to assist in synthesis of proteins which contribute to learning, in a process called Long Term Potentiation (LTP).

Because the effects of a severe traumatic brain injury can last for months or years before improving, results of treatment for TBI are often slow and inconsistent. Generally, there is no effective protocol treating chronic TBI’s because they are so varied in origin and presentation. This is why the breakthrough from UCSF is so impactive. To possibly reverse the effects of brain damage offers extensive hope and potential for TBI survivors, their families, and their care team.

The absolutely amazing aspect of ISRIB is that it affects chronic effects of TBI. Chronic effects of an injury are very difficult to reverse as the system has often acclimated to its chronic state, making the effects more stable and difficult to change. It is incredible that a drug has been developed to not only inhibit the pathway of a TBI, but reverse its deleterious and long-lasting effects. The potential implications of this medications are massive, possibly allowing people with TBI’s to not only restore memory but continue learning.

Thus far ISRIB has only been tested in mice, and the next phase is move it forward for human testing. ISRIB was licensed in 2015 to Calico, a California-based company which owns rights to discoveries in Dr. Walter’s biochemistry lab at UCSF.

Advertisements

 

Most emergency medical training involves lifeless torsos, videos, and noninvasive simulated work on a live partner in which you haphazardly  practice what you would actually have to do in an emergency situation. From my personal experience of many CPR classes as well as a course of emergency medical training, I can attest none of this prepares you very well for what you would actually have to act out in a life threatening situation. No, you can never fully prepare for having to rescue someone, but what gives you the confidence to do it is practicing something similar prior to having to act on the spot.

Kernerworks has developed a realistic robotic mannequin that breathes, bleeds, and responds to procedures to give feedback if they have been performed correctly.This company in San Rafael, CA includes a team of former special effects artists that used to work for film studios. The mannequins were molded from real people, given realistic features, and have an internal computer system that includes sensors which respond to procedures.

Used for military training for trauma response, one of the products is a double amputee mannequin which allows trainees to practice relieving pnueumothorax with a needle (sensors respond if done correctly). One of the features is also a well developed throat which features air differential sensors. Medics can practice placing a laryngoscope into the throat which has a camera so you can see the placement of a tube for breathing. An endotracheal tube can be placed in the throat for use of an Ambu bag, if done correctly this shows the chest rising. If it is done incorrectly and the tube is accidentally placed into the esophagus, the chest will not rise. Unlike most practice torsos, these are sensors responding to these procedures, which are much more precise. Watch the video above for a tour Tested shared which explains more about the company and the incredible work behind the mannequins.

https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcRssvil4tC15z-pOM2KJzrZKqY8RxdroRFE6uo1fJzq63z1EsKT

source