For those with neurological injuries which affect the use of both their arms and legs, options can be limited for assistive devices to help with ambulation. Those with paralysis in their legs who still have control of their arms can use their upper extremities to assist with balance or propulsion such as in wheelchairs or more advanced robotic devices. Those with loss of control of both upper and lower extremities, however, such as in the case of cervical level spinal cord injuries or diseases such as ALS have much more limited options. Even if a device were to allow a quadriplegic person to stand, it would be difficult for them to advance their movement.
This is part of the reason why the BCI exoskeleton developed by Korea University and TU Berlin is so groundbreaking and amazing. An EEG cap allows the user to focus on flickering LED lights, each at a different frequency with a different command. The commands are: walking, turning left, standing, turning right, and sitting. A visual focus on one of these commands by the user is received by the EEG cap and changes the action potential to trigger a response for movement by the exoskeleton. This mirrors the response of muscles in our own system, it is the change in voltage which causes the nerves to send signals to muscles to contract for desired movement.
Truly, this exoskeleton is brilliant in the research and innovation behind the product. Please read the full paper that was published for the hard work and consideration that went into this project. While this is a research phase of design, hopefully this is a viable product that will become available to the general public soon.