Archives for category: elderly care

source

A lightweight wearable robot which subtly assists with human movement? The amazing innovation of wearable technology cannot be achieved without intelligence, countless hours of work, and years of research by those behind the products. Boosted by a recent DARPA grant, Harvard’s Wyss Insititute is developing a Soft Exosuit to assist with walking with the use of textiles and wearable sensors. While not yet a completed product for the market, it is already clear how this wearable robot can potentially change the lives of those with neurological disorders, muscle weakness, the elderly, and those that are fatigue-prone in professions such as the military and first responders.

The components of this product are amazing, especially in their consideration to avoid interference of the device with the user. Elastic textiles that align with certain muscle groups and transmit forces to the body to assist with natural, synergistic movement during gait. Because the textiles are elastic and are unable to measure angles at joints (as rigid components do normally), wearable sensors at the hip, calf and ankle monitor forces and changes in movement. The idea is to provide assistive torque at the joints to mimic normal muscle activity when needed. The sensors track the changes in movement to monitor the types of activities of the user, such as walking or running, to assist with the diversity of everyday activity.

Something especially interesting about the Exosuit is how closely it works with human physiology and biomechanics during gait, including the passive movement of the limbs during walking. Because the functional textiles stretch, they can closely align with muscle groups and assist movement without letting the components interfere with what is natural for the body.

Please see the video below for more:

For those with diminished strength or function of the hand, daily tasks that we often take for granted may become difficult, essentially disabling someone in their daily life. To address this and increase efficiency of the performance of the hand, researchers at MIT have developed “Supernumerary Robotic Fingers,” a type of wearable robotic device with two extra fingers to complement the grasping function of a regular hand.

In normal human movements we have muscles that work synergistically, meaning that there is a central signal from the brain that allows them to contract together to create a certain movement. For example, when the biceps contracts to bend the elbow, the muscle brachialis contracts as well to help facilitate this movement. This allows for efficiency of tasks in our body.

An article titled Bio-Artificial Synergies for Grasp Postural Control of Supernumerary Robotic Fingers explains how the researchers have developed an algorithm to allow the robotic fingers to work synergistically with human hands. That is, the extra fingers are designed to correlate with the human movements to work as an extension of the human hand and enhance activity to form essentially a seven-fingered hand. The researchers use the concept of “Bio-Artificial Synergy.” Thus, the researchers have essentially developed extra fingers that replicate the movements of muscles in the human hand.

The device is mounted on the wrist, and through a sensor glove receives a signal from the hand and works alongside the five fingers to assist with grasping objects. The robotic fingers are longer than human digits, making it easier to grasp larger objects. Each robotic finger can move in 3 different directions. For those that have difficulty holding onto objects or performing coordinated movements, this can be an invaluable tool to perform tasks independently.

Because of these extra fingers, the user is able to perform tasks that are normally difficult to perform single-handedly, such as twisting open a bottle cap, holding a tablet and typing, This product is still in the development phase, and though researchers have amazingly been able to correlate the robotic hand angles with human hand angles for grasp, they have not yet completed algorithms for fingertip forces.

The article mentions that this devices has implications not only for elder care, but for construction and manufacturing.

See the video below for more description of this amazing device:

photo source

 

 

For those that prefer independent living but require assistance with dally tasks such as eating, Swedish company Bestic has developed a robotic arm that assists with eating. It can be programmed for height, speed, and type of food, and allows the user to eat alongside others without requiring the assistance of another person. For those with musculoskeletal and neurological injuries and diseases that render their upper body muscles weak or with tremor such as Polio, MS, Parkinson’s or Ataxia, this allows for some normalcy at mealtime.

Those that are interested in trying the device can contact the makers through their website.

Watch the video below: