Archives for posts with tag: spinal cord injuries

Related image

source

Those with spinal cord injuries (SCI’s) know that medicine still has a long way toward a successful solution for their injury.  Spinal cord injuries often occur as a result of trauma, such as a fall or gunshot wound. The initial physical compression and loss of blood supply to the spinal cord, followed by secondary edema and swelling cause a death of the spinal nerves which control our movement. In short, this type of injury usually takes away a person’s ability to walk and stand on their own.

SCI’s are normally classified in ASIA grades from complete (A) to normal (E), with incomplete injuries in between. Complete injuries involved complete loss of movement and sensation below the level of injury, while incomplete injuries maintain some preservation of sensation or motor control. Unfortunately, the rate of spontaneous recovery for those with complete injuries is low, while incomplete injuries have a slightly better success rate of recovery.

One project working toward a solution for spinal cord injuries by combining technology and rehabilitation is the Walk Again Project. Working toward a protocol for SCI recovery, this group has recently published research combining virtual reality and robotic assistance with variable gait training. And, it has shown promise of providing some recovery even for paralyzed individuals with complete SCI’s.

In the publication, the project demonstrates a partial return of neurological function in complete SCI’s by combining several methods of treatment. As the person controlled movement via a robotic exoskeleton with their brain using virtual reality for guidance, they also received some physical feedback from their environment. This physical feedback was applied to areas such as their feet or forearms in response to certain movements.

The results of this involved, year-long training are novel and incredible. People with previous complete loss of muscle and sensory function were able to regain some motor control, sensation, and proprioception after training. This is a novel publication by the length of the study and methods of guidance which lead those with SCI’s back toward recovery. The combination of brain machine interface, robotics, and rehabilitation provides a groundwork for future treatment options.

The effectiveness of this training may partly be explained by the idea that by forcing the body to walk and waking up the part of the brain which controls movement, the motor cortex, motor function is partially restored. Additionally, the physical movement may activate CPG’s (central pattern generators) in the spinal cord, which generate rhythmic movement. There may still be a long way to go toward medicine in SCI treatment, but this project provides solutions and hope through combined methods. Watch the video below for more insight into this amazing project:

source

The bionic exoskeleton will never, ever cease to be an amazing product. It is, in every way, aligned with the evolution of man, from technology to function. We have developed as humans to walk, and not sit, and so a product that addresses the captivity of being wheelchair bound addresses the essence of what we are: bipedal creatures. The robotic exoskeleton technology has been breathtaking to observe as it evolves, from bulky and functional to increasingly light, mobile, and personalized.

The prosthetic world is undergoing a revolution, and has never seen such advances as in the last 10 years. The work behind it, the hours of labor, the intelligence of those who are painstakingly developing these products while trying to negotiate with the FDA for home and personal use may be unseen, but the finalized product’s beauty is visible. As technology advances, however, so does the cost, and many home units of motorized prosthetics are still out of financial reach for those that need it.

Phoenix by SuitX addresses these financial and functional concerns while presenting an amazing, modular, lightweight product. Weighing only 27 pounds, Phoenix allows 4 hours of continuous use between charges, and can be put on piece by piece for ease of use. Its adaptive fit also allows for a more minimalist design, which can allow for versatility and a generally more aesthetic approach.

SuitX’s mission to accept feedback from its users with constant research and development, gear the product toward versatile ambulatory use, and focus on making not only a highly functional but affordable product marks the shift toward a more approachable and attainable bionic exoskeleton for paraplegics.

Anyone that has ever observed anyone with a neurological injury that renders them paralyzed in the lower extremities understands the necessity of a device that allows them to stand and ambulate. A constant sedentary and inactive life wreaks havoc on a person’s health and is psychologically extremely difficult. For years, otherwise healthy and often young people have been given only a wheelchair as the answer to their injury, but thankfully this sentence is changing with devices such as Phoenix.

Watch the video below for a demonstration and explanation of this amazing product.

Grip Glove

source

The Wyss Institute at Harvard has many amazing projects, one of which currently is the soft robotic glove. Certain neurological diseases leave many patients with so much weakness and lack of motor control in the hands that they become limited in performing simple daily tasks such as grasping, holding, and lifting objects. These are activities that we often do mindlessly throughout the day, such as brushing our teeth, and as our need for fine motor tasks is so constant that we often do not give this much consideration.

Diseases such as muscular dystrophy, ALS, and incomplete spinal cord injuries can limit the neurological input to the muscles of the hand, decreasing a person’s strength and function. A disease that causes a lack of strength and progressive loss of motor control in the hands leaves its subjects essentially disabled, unable to hold even a cup without dropping it.

The soft robotic glove was developed with these kinds of diseases in mind, and fortunately also kept in mind was the ease of use and comfort for its user. A soft robotic is more flexible and able to mimic natural human movement much better than bulky and rigid external hardware. The motors in the Soft Robotic Glove rather mimic the grasping and fine motor tasks of a healthy hand/wrist complex, allowing more natural motion and improved grip. Much research was put into this project for actuators and sensors that mimic human force, pressure and grip to help clients restore some natural function of their hands.

Still in the development phase and not yet for sale on the market, please watch the video below for more information and insight on this amazing product.

source

A lightweight wearable robot which subtly assists with human movement? The amazing innovation of wearable technology cannot be achieved without intelligence, countless hours of work, and years of research by those behind the products. Boosted by a recent DARPA grant, Harvard’s Wyss Insititute is developing a Soft Exosuit to assist with walking with the use of textiles and wearable sensors. While not yet a completed product for the market, it is already clear how this wearable robot can potentially change the lives of those with neurological disorders, muscle weakness, the elderly, and those that are fatigue-prone in professions such as the military and first responders.

The components of this product are amazing, especially in their consideration to avoid interference of the device with the user. Elastic textiles that align with certain muscle groups and transmit forces to the body to assist with natural, synergistic movement during gait. Because the textiles are elastic and are unable to measure angles at joints (as rigid components do normally), wearable sensors at the hip, calf and ankle monitor forces and changes in movement. The idea is to provide assistive torque at the joints to mimic normal muscle activity when needed. The sensors track the changes in movement to monitor the types of activities of the user, such as walking or running, to assist with the diversity of everyday activity.

Something especially interesting about the Exosuit is how closely it works with human physiology and biomechanics during gait, including the passive movement of the limbs during walking. Because the functional textiles stretch, they can closely align with muscle groups and assist movement without letting the components interfere with what is natural for the body.

Please see the video below for more:

photosource

There is no doubt that robotics is changing and improving the field of healthcare. While there are many brilliant products being introduced in this field, it is the robotic exoskeleton that I personally find the most amazing. To think that one day we can completely eradicate the long term use of wheelchairs for people with neurological injuries and replace them with a wearable robot which allows them to stand and walk is absolutely inspiring.

The Indego is one of these devices. Weighing in at 26 pounds, this modular device comes in 5 pieces and is put on in components over the legs, hips and torso. The light frame of the device allows users to keep it on even while in a wheelchair prior to use. The device responds to weight shifts in order to guide movement. A forward lean allows the device to help users stand and walk, while leaning backward stops movement. Modular components at the hip and legs propel forward movement at the joints once initiated.

Currently only available for research purposes in rehabilitation centers, the website states it anticipates commercial sales in the US in 2016.

See the video below for demonstration and more information:

The age of robotics has created a new kind of athlete, and the possibilities are quite amazing. 2016 will mark the first Cybathlon, to be held in Switzerland. This will be a competition for parathletes, called “pilots,” using robot-assisted technology. The competition is an Olympics-style event, featuring six different competitions, or “disciplines.” Each discipline features pilots with a specific category of injury using an appropriate device. In this competition, both the pilots and robotics companies are allowed the opportunity to win a prize. This competition is not only a victory for the advancement of robotics beyond basic function, but more importantly for athletes with life altering injuries such as amputations and spinal cord injuries.

The first competition will is an “Arms Prosthetic Race,” which features two events. Those with amputation of the arms using upper body bionic prosthetics to complete a two hand course using a loop around a wire, and a “SHAP course ADL” which is an upper body obstacle course requiring pilots to perform a series of tasks, grasping different kinds of objects in order to progress to the next.

The second discipline is a BCI (brain computer interface) race, in which participants mentally race avatars through a variety of obstacle courses. This discipline is for those with spinal cord injury at neck level, which has left them paralyzed from the neck down.

The discipline close to heart, however, is the “Powered Exoskeleton Race.” Did we ever think we would see a day when athletes with spinal cord injuries leaving their lower body without motor control would run in an Olympic-style event? This discipline will feature an obstacle course including stairs, ramps, slopes, narrow beam and others, ending in a final sprint. Wow.

For those with spinal cord injuries leaving their trunk and upper body motor control intact, Discipline three features an FES (Functional Electrical Stimulation) bike race. An FES bike assists lower body movement while the trunk and arms work to help control the bike around a race course.

A Leg Prosthetics Race and Powered Wheelchair Race comprise two other disciplines for those with lower body injuries.