Archives for posts with tag: Virtual reality

Related image

source

Those with spinal cord injuries (SCI’s) know that medicine still has a long way toward a successful solution for their injury.  Spinal cord injuries often occur as a result of trauma, such as a fall or gunshot wound. The initial physical compression and loss of blood supply to the spinal cord, followed by secondary edema and swelling cause a death of the spinal nerves which control our movement. In short, this type of injury usually takes away a person’s ability to walk and stand on their own.

SCI’s are normally classified in ASIA grades from complete (A) to normal (E), with incomplete injuries in between. Complete injuries involved complete loss of movement and sensation below the level of injury, while incomplete injuries maintain some preservation of sensation or motor control. Unfortunately, the rate of spontaneous recovery for those with complete injuries is low, while incomplete injuries have a slightly better success rate of recovery.

One project working toward a solution for spinal cord injuries by combining technology and rehabilitation is the Walk Again Project. Working toward a protocol for SCI recovery, this group has recently published research combining virtual reality and robotic assistance with variable gait training. And, it has shown promise of providing some recovery even for paralyzed individuals with complete SCI’s.

In the publication, the project demonstrates a partial return of neurological function in complete SCI’s by combining several methods of treatment. As the person controlled movement via a robotic exoskeleton with their brain using virtual reality for guidance, they also received some physical feedback from their environment. This physical feedback was applied to areas such as their feet or forearms in response to certain movements.

The results of this involved, year-long training are novel and incredible. People with previous complete loss of muscle and sensory function were able to regain some motor control, sensation, and proprioception after training. This is a novel publication by the length of the study and methods of guidance which lead those with SCI’s back toward recovery. The combination of brain machine interface, robotics, and rehabilitation provides a groundwork for future treatment options.

The effectiveness of this training may partly be explained by the idea that by forcing the body to walk and waking up the part of the brain which controls movement, the motor cortex, motor function is partially restored. Additionally, the physical movement may activate CPG’s (central pattern generators) in the spinal cord, which generate rhythmic movement. There may still be a long way to go toward medicine in SCI treatment, but this project provides solutions and hope through combined methods. Watch the video below for more insight into this amazing project:

VR and no VR treatments compared using fMRI

source

What if we could minimize the amount of deleterious painkillers and risky anesthetic procedures simply by providing someone with a distraction? Many people have at some time experienced how distraction can minimize pain, and now virtual reality products are emerging for practical use in healthcare.

Pain is a major reason people seek medical treatment, and one of the main factors that we want to minimize during medical procedures. Like most ‘feelings’ it is also an incredibly difficult concept to objectively measure, and is almost entirely subjective based on the individual. Previous experience, sensitivity, and psycho-social factors all play into our perception of what we perceive as an unpleasant, protective response.

Though it is difficult to tell someone that the pain they are experiencing is ‘all in their head,’ this is the most basic explanation of what is behind the sensation. The way that our brain interprets the signals we receive dictates what we feel.

Firsthand is a virtual reality company which is using the individual interpretation of pain experience to create a product which provides an alternate treatment to manage pain levels. With animation playing for a subject undergoing a medical procedure, early trials have shown a decrease in reported pain for those using the Firsthand virtual reality masks. Subjects wearing the mask can engage in a game such as ‘SnowWorld,’throwing snowballs at objects while they virtually navigate an icy terrain.

A great aspect of Firsthand’s trial is the ability to specify parameters used during the VR experience: a wide field of view above 60 degrees, visual flow, and engaging interaction.This provides a framework toward future use, with the hope that VR can become standardized for pain control.

Numerous studies in medicine and dentistry have begun to turn toward virtual reality as an analgesic. In one study, subjects undergoing a burn wound debridement reported significantly decreased pain when using VR as a distraction. Burn wound debridements are incredibly painful, and it is amazing that numerous subjects would report decreased pain during this procedure without medication.

For those dealing with chronic pain whose only medical option is often medication after failing numerous other treatments, Firsthand could offer some hope to help break the pain cycle. And for those undergoing medical procedures, Firsthand could provide an alternate experience to minimize the recovery and side effects of anesthesia and strong pain medications.

Watch the video below for more insight of how virtual reality can provide an alternative to painkillers for those dealing with chronic pain: