Archives for category: wearable technology

BCI neurotech

source

How much effort goes into picking up a spoon? The planning and anticipation of which hand to use, where to place the hand, when to open and close the fingers, and how much weight to anticipate is complex and requires much coordination of the nervous and musculoskeletal systems.

In a normally functioning nervous system, movement of the extremities occurs when electrical impulses from the brain trigger a response which is sent to muscles. The central nervous system (brain and spinal cord) passes along electrical signals to the peripheral nervous system, and the nerves in the peripheral nervous system respond by communicating with their corresponding muscles.

When a person has a neurological injury causing paralysis, the signals between the central nervous system and peripheral nervous system are interrupted. Suddenly, simple every day tasks become complicated. An injury such as a fall causing quadriplegia can leave a person struggling to figure out how to move around and perform previously effortless everyday tasks such as eating and getting dressed. The aspiration with medical technology, then, is to make the transition from injury to adjustment as smooth as possible.

Neuroprosthetics are medical devices intended to assist with injuries to the nervous system. In recent years, there has been much growth with this technology using brain-computer interface (BCI), robotics, and exoskeleton technology. The challenge with neurological injuries, however, is that it is very difficult to replicate the intricate and precise workings of the brain and nervous system.

The team from BrainGate recently published a study following a quadriplegic subject in which they ultimately allowed him to use his brain to successfully control the movement in his arms to be able to feed himself. This amazing coordination of technology was achieved by implanting electrodes into his brain which picked up electrical signals and transfer these signals to Functional Electrical Stimulation (FES).

In this study, the electrodes implanted in the motor cortex picked up the electrical signals as he planned to use his upper extremities. The BrainGate system is able to decipher the signals from the brain activity and transfer it to the FES system through electrical pulses. These electrical pulses stimulated the muscles in his arm, creating the desired movement which the participant had planned for. Specifically, the man was able to feed himself using his hand for the first time in 8 years.

Still an investigational device, the BrainGate system is so promising in providing independence and versatility of movement, and the team is now working with the Harvard Wyss Center. The hope is that someday individuals will be able to implement neurotechnology such as this as soon as possible after injury, allowing for adjustment before the deleterious effects of immobility set in.

Watch the video below for more insight into this amazing work:

 

Related image

source

Those with spinal cord injuries (SCI’s) know that medicine still has a long way toward a successful solution for their injury.  Spinal cord injuries often occur as a result of trauma, such as a fall or gunshot wound. The initial physical compression and loss of blood supply to the spinal cord, followed by secondary edema and swelling cause a death of the spinal nerves which control our movement. In short, this type of injury usually takes away a person’s ability to walk and stand on their own.

SCI’s are normally classified in ASIA grades from complete (A) to normal (E), with incomplete injuries in between. Complete injuries involved complete loss of movement and sensation below the level of injury, while incomplete injuries maintain some preservation of sensation or motor control. Unfortunately, the rate of spontaneous recovery for those with complete injuries is low, while incomplete injuries have a slightly better success rate of recovery.

One project working toward a solution for spinal cord injuries by combining technology and rehabilitation is the Walk Again Project. Working toward a protocol for SCI recovery, this group has recently published research combining virtual reality and robotic assistance with variable gait training. And, it has shown promise of providing some recovery even for paralyzed individuals with complete SCI’s.

In the publication, the project demonstrates a partial return of neurological function in complete SCI’s by combining several methods of treatment. As the person controlled movement via a robotic exoskeleton with their brain using virtual reality for guidance, they also received some physical feedback from their environment. This physical feedback was applied to areas such as their feet or forearms in response to certain movements.

The results of this involved, year-long training are novel and incredible. People with previous complete loss of muscle and sensory function were able to regain some motor control, sensation, and proprioception after training. This is a novel publication by the length of the study and methods of guidance which lead those with SCI’s back toward recovery. The combination of brain machine interface, robotics, and rehabilitation provides a groundwork for future treatment options.

The effectiveness of this training may partly be explained by the idea that by forcing the body to walk and waking up the part of the brain which controls movement, the motor cortex, motor function is partially restored. Additionally, the physical movement may activate CPG’s (central pattern generators) in the spinal cord, which generate rhythmic movement. There may still be a long way to go toward medicine in SCI treatment, but this project provides solutions and hope through combined methods. Watch the video below for more insight into this amazing project:

source

What makes life meaningful? For me, part of the answer has always been movement. The ability to move forward through situations, to walk, to run. The understanding of the devastation with cessation of movement has allowed me to work with patients to meet their goals in physical therapy. To stop moving is to pause life, and a person shouldn’t have to pause life just because of a change in their physical status.

Cybathlon is fast approaching. It is the culmination of what is great about technology, creativity, and human adaptability: pairing assistive robotic devices with disabled competitors in what will be the first ‘Cyborg Olympics.’ Since first writing of the event 2 years ago, I’ve been eagerly awaiting which products will support the pilots in each of the six disciplines.

The website is now updated, and the event is set with the teams, which include pilots (competitors) and the respective assistive robotic technologies which they will be using for the race. I’m looking forward to exploring and writing of the different technologies which the pilots will be using.

Beyond just the competitions, however, Cybathlon aims to connect academia, industry and the general public while bringing awareness to the issues surrounding those with disabilities. The event was created by a professor of ETH Zurich to connect these realms, and prior to the event there will also be a synopsium where researchers and experts will be able to discuss the technology surrounding the event.

Truly Cybathlon is amazing, from inception to organization. The event provides a platform not only for the athletes, but also for researchers and creators. The goal here is not opportunism, but rather progress and communication. From here, there can only be further advancement of human movement for those with disabilities.

source

The bionic exoskeleton will never, ever cease to be an amazing product. It is, in every way, aligned with the evolution of man, from technology to function. We have developed as humans to walk, and not sit, and so a product that addresses the captivity of being wheelchair bound addresses the essence of what we are: bipedal creatures. The robotic exoskeleton technology has been breathtaking to observe as it evolves, from bulky and functional to increasingly light, mobile, and personalized.

The prosthetic world is undergoing a revolution, and has never seen such advances as in the last 10 years. The work behind it, the hours of labor, the intelligence of those who are painstakingly developing these products while trying to negotiate with the FDA for home and personal use may be unseen, but the finalized product’s beauty is visible. As technology advances, however, so does the cost, and many home units of motorized prosthetics are still out of financial reach for those that need it.

Phoenix by SuitX addresses these financial and functional concerns while presenting an amazing, modular, lightweight product. Weighing only 27 pounds, Phoenix allows 4 hours of continuous use between charges, and can be put on piece by piece for ease of use. Its adaptive fit also allows for a more minimalist design, which can allow for versatility and a generally more aesthetic approach.

SuitX’s mission to accept feedback from its users with constant research and development, gear the product toward versatile ambulatory use, and focus on making not only a highly functional but affordable product marks the shift toward a more approachable and attainable bionic exoskeleton for paraplegics.

Anyone that has ever observed anyone with a neurological injury that renders them paralyzed in the lower extremities understands the necessity of a device that allows them to stand and ambulate. A constant sedentary and inactive life wreaks havoc on a person’s health and is psychologically extremely difficult. For years, otherwise healthy and often young people have been given only a wheelchair as the answer to their injury, but thankfully this sentence is changing with devices such as Phoenix.

Watch the video below for a demonstration and explanation of this amazing product.

SENSARS-PRODUCT-2

source

What if there was a device which allowed amputees to feel their limbs again?

The loss of a limb or damage of the nerves that travel through our bodies can greatly diminish the human experience. The sensory system dictates how we respond to our environment, transmitting signals to and from our brains so we can move and feel. Pain, pressure, and temperature response are just some of the functions of the somatosensory system connected to our skin, allowing us to experience the world. In addition, our nerves have a motor component, sending signals from the brain to our muscles, telling them to work so we can move and perform tasks.

Nerves function much like electrical wires, transmitting signals between the brain and areas of stimulus, like an electrical wire between a socket and device. It is this electrical current which causes signals to be transmitted. After an amputation, the nerve is severed, not only disrupting the flow of a nerve signal, but also sometimes leaving amputees with a cruel phantom limb pain, as if the limb was still there. For those with limbs still intact who suffer from nerve damage, the physical limb remains, but its function is diminished without the motor and sensory signals being transmitted.

SENSY by Sensars is almost unbelievable in the amazing feat that it has sought to achieve, allowing amputees and those with nerve damage to feel again. Artificial sensors are implanted to connect to intact nerves, stimulating response in the brain as if there was an intact nerve in a limb. The sensors are connect to wires simulating an actual nerve, and those wires are implanted and connected to actual nerves within the body. Between the artificial sensors  and the residual nerve is an implantable neurostimulator which is bidirectional, sending and receiving signals from both the intact nerve and the artificial sensors.

The versatility of SENSY is also amazing. The company has a multi-functional product which targets both amputees and those with intact limbs who have nerve damage. There are 3 options, but the flow of information is essentially the same. A sensor (either from artificial skin, glove/sock, or “pacemaker”) sends a signal to a controller which is able to activate that signal to an implantable neurostimulator, which causes an electrical signal to communicate with the intact nerve. Once that communication is made, the connection is made between the artificial and biological part of the nervous system, and feeling is processed in the brain.

For amputees, Sensar has sought to decrease phantom limb pain and increase sensory feedback through sensors with a neuroprosthetic device which includes artificial skin. As we know, skin is very sensitive, and in this case will contain sensors which will prompt the prosthetic device to send signal through the artificial nervous system.

For those with intact limbs. the company is designing socks and gloves for those with upper and lower limb nerve damage. These socks and gloves contain sensors within the fabric which act essentially as sensitized skin, also sending signals to an implanted device which communicates with the intact nerves.

Finally, for those with an amputation but without prosthesis, the company has created an implantable pacemaker, essentially an excitable device like a sensor which also sends a signal to the nerve.

Go to the website to read about the full and brilliant description of this product, and watch the video for a visualization of how the artificial sensors are able to communicate with an intact nerve.Still in the prototype phase and not yet available for sale, SENSY will truly impact people’s lives once it is on the market.

 

 

 

 

 

 

source

Anyone that has ever seen the effects of a stroke knows that they can be physically devastating. Within a day, a physically functional person can lose strength to an entire side of their body and face; leaving them dependent on caretakers or suddenly forced to spend a long period in the hospital. Though a stroke is an injury to the brain, whichever part of the brain it affects means that part of the body’s command center has been injured. In effect this severs the signal to the body, leaving muscles without direction.

Due to disuse after a stroke, the muscles will atrophy and fail to function properly, aligning with the common knowledge of “use it or lose it.”

However, if there is something to intervene early, and assist with rehabilitation and movement, it could possibly accelerate the recovery process.

The Rapael Smart Glove by Neofect is a brilliant way to engage stroke patients in movement and monitor progress. By assigning tasks to the user and simultaneously assisting them with the appropriate movements, the Smart Glove retrains the body in proper movement patterns. Through a mathematical analysis, these ‘task-training games’ are also adjusted for the user’s stroke level, ranging from mild to severe.

Though still in the prototype phase, the product is a brilliant solution to assist with the challenges of retraining stroke patients. Oftentimes, though a person wants to carry out a certain movement, they are unable. A product such as this assists with carrying out the planned movement, helping to bridge the injured signal between the mind and body. The system assists with 3 vital movements in upper body mobility: rotation of the forearm, upward and downward bending of the wrist, and opening and closing the hand.

 

 

Grip Glove

source

The Wyss Institute at Harvard has many amazing projects, one of which currently is the soft robotic glove. Certain neurological diseases leave many patients with so much weakness and lack of motor control in the hands that they become limited in performing simple daily tasks such as grasping, holding, and lifting objects. These are activities that we often do mindlessly throughout the day, such as brushing our teeth, and as our need for fine motor tasks is so constant that we often do not give this much consideration.

Diseases such as muscular dystrophy, ALS, and incomplete spinal cord injuries can limit the neurological input to the muscles of the hand, decreasing a person’s strength and function. A disease that causes a lack of strength and progressive loss of motor control in the hands leaves its subjects essentially disabled, unable to hold even a cup without dropping it.

The soft robotic glove was developed with these kinds of diseases in mind, and fortunately also kept in mind was the ease of use and comfort for its user. A soft robotic is more flexible and able to mimic natural human movement much better than bulky and rigid external hardware. The motors in the Soft Robotic Glove rather mimic the grasping and fine motor tasks of a healthy hand/wrist complex, allowing more natural motion and improved grip. Much research was put into this project for actuators and sensors that mimic human force, pressure and grip to help clients restore some natural function of their hands.

Still in the development phase and not yet for sale on the market, please watch the video below for more information and insight on this amazing product.

source

Each development in the exoskeleton industry seems more amazing and unbelievable, pushing users into a new frontier of possibility for motion. HAL (Hybrid Assistive Limb) by Cyberdyne, coined as “The world’s first cyborg-type robot,” is a thought-driven exoskeleton which provides gait assistance for its users, among other functions. Designed for both industrial use and motor relearning after neurological injury, HAL provides strength and facilitates feedback for those that need extra power with gait.

Cyberdyne explains HAL’s function from thought to movement in 7 steps. The process is initiated when the user thinks about the movement. In relearning movement after an injury, to include this thought component to the movement process is vital. In an uninjured person every voluntary movement begins in the motor cortex with thought, where the movement signal is ultimately sent to a muscle to produce movement. The way that HAL replicates this process is by attaching sensors on the wearer’s skin which receive these bio-electric signals (BES) from the brain. Upon receiving these signals, the body begins to move, causing the device to move as well, thereby assisting and adding power to human motion.

We are getting closer and closer to a device that will free those with spinal cord injuries, and other neurological injuries, from the restraint of a wheelchair. HAL is an amazing, well executed device.

Please visit the site for more information and sales inquiries. HAL has multiple variations of its product, including lumbar support for lifting and a cleaning robot.

287.png

source

It is the exoskeleton which ignited my love for robotics, a device which both mirrors and enhances human function without replacing it. As with most technology, as the robotic exoskeleton develops it is moving away from bulky and functional to sleek and precise.

One such example of this development is the Cyclone Rope Piston by Rise Robotics. Rise Robotics has created an actuator (motor) which, paired with cables efficiently transfers power to the user. Just as a particular movement, such as holding something while bending and straightening the arm, is easier if a muscle is able to work throughout the entire range of motion, this motor helps generate power throughout the entire movement of the user. The development of such a motor potentially makes an exoskeleton much more functionally strong by generating more efficient power throughout the entire range of movement of the user.

The Cyclone Rope Piston allows for a lightweight wearable robot to assist with either strenuous activity for an able-bodied person, or movement assistance for rehabilitative purposes. This product is still in the funding phase.

For a more detailed explanation of the impressive and innovative mechanics of this system, I would recommend watching the extremely well made video below:

Silver nanowire sensors hold promise for prosthetics, robotics

source

As wearable technology progresses, monitoring activity using these devices will require more accuracy as the user interacts with the environment. From fitness trackers to prosthetics, a wearable robotic device is extremely useful if its user is able to interact and gain feedback from its use. At North Carolina State University, researchers developed a silver-based nanowire sensor to monitor changes in pressure, finger touch, strain, and bioelectronic changes. As described in the study, the sensor involves a material placed between two conductors. The silver wires are the conductors, while the material in the middle is Ecoflex silicone and serves as the electric insulator. These sensors are moveable, stretchable, and respond to pressure changes in real time, within 40 milliseconds. Between these two layers an electric charge is stored, and as the sensor is stretched or deformed in any way, this change is interpreted as energy and measured.

The movements which these sensors are able to detect are walking, running, and jumping from squatting. For use in robotics devices such as exoskeletons and prosthetics, this information will become invaluable as the user will need this information in order to interact with the environment for safety and feedback purposes. The sensors can be used to ‘feel’ the environment, as well as to monitor movement and activity. For those with robotic prosthetic devices, these sensors can be used to provide important feedback to retrain the body and provide kinesthetic feedback.

One of the unique attributes of these sensors is their ability to deform and change shape with movement, as they can stretch up to 150% of their original shape.