Archives for category: rehabilitation

Related image

source

Those with spinal cord injuries (SCI’s) know that medicine still has a long way toward a successful solution for their injury.  Spinal cord injuries often occur as a result of trauma, such as a fall or gunshot wound. The initial physical compression and loss of blood supply to the spinal cord, followed by secondary edema and swelling cause a death of the spinal nerves which control our movement. In short, this type of injury usually takes away a person’s ability to walk and stand on their own.

SCI’s are normally classified in ASIA grades from complete (A) to normal (E), with incomplete injuries in between. Complete injuries involved complete loss of movement and sensation below the level of injury, while incomplete injuries maintain some preservation of sensation or motor control. Unfortunately, the rate of spontaneous recovery for those with complete injuries is low, while incomplete injuries have a slightly better success rate of recovery.

One project working toward a solution for spinal cord injuries by combining technology and rehabilitation is the Walk Again Project. Working toward a protocol for SCI recovery, this group has recently published research combining virtual reality and robotic assistance with variable gait training. And, it has shown promise of providing some recovery even for paralyzed individuals with complete SCI’s.

In the publication, the project demonstrates a partial return of neurological function in complete SCI’s by combining several methods of treatment. As the person controlled movement via a robotic exoskeleton with their brain using virtual reality for guidance, they also received some physical feedback from their environment. This physical feedback was applied to areas such as their feet or forearms in response to certain movements.

The results of this involved, year-long training are novel and incredible. People with previous complete loss of muscle and sensory function were able to regain some motor control, sensation, and proprioception after training. This is a novel publication by the length of the study and methods of guidance which lead those with SCI’s back toward recovery. The combination of brain machine interface, robotics, and rehabilitation provides a groundwork for future treatment options.

The effectiveness of this training may partly be explained by the idea that by forcing the body to walk and waking up the part of the brain which controls movement, the motor cortex, motor function is partially restored. Additionally, the physical movement may activate CPG’s (central pattern generators) in the spinal cord, which generate rhythmic movement. There may still be a long way to go toward medicine in SCI treatment, but this project provides solutions and hope through combined methods. Watch the video below for more insight into this amazing project:

source

The bionic exoskeleton will never, ever cease to be an amazing product. It is, in every way, aligned with the evolution of man, from technology to function. We have developed as humans to walk, and not sit, and so a product that addresses the captivity of being wheelchair bound addresses the essence of what we are: bipedal creatures. The robotic exoskeleton technology has been breathtaking to observe as it evolves, from bulky and functional to increasingly light, mobile, and personalized.

The prosthetic world is undergoing a revolution, and has never seen such advances as in the last 10 years. The work behind it, the hours of labor, the intelligence of those who are painstakingly developing these products while trying to negotiate with the FDA for home and personal use may be unseen, but the finalized product’s beauty is visible. As technology advances, however, so does the cost, and many home units of motorized prosthetics are still out of financial reach for those that need it.

Phoenix by SuitX addresses these financial and functional concerns while presenting an amazing, modular, lightweight product. Weighing only 27 pounds, Phoenix allows 4 hours of continuous use between charges, and can be put on piece by piece for ease of use. Its adaptive fit also allows for a more minimalist design, which can allow for versatility and a generally more aesthetic approach.

SuitX’s mission to accept feedback from its users with constant research and development, gear the product toward versatile ambulatory use, and focus on making not only a highly functional but affordable product marks the shift toward a more approachable and attainable bionic exoskeleton for paraplegics.

Anyone that has ever observed anyone with a neurological injury that renders them paralyzed in the lower extremities understands the necessity of a device that allows them to stand and ambulate. A constant sedentary and inactive life wreaks havoc on a person’s health and is psychologically extremely difficult. For years, otherwise healthy and often young people have been given only a wheelchair as the answer to their injury, but thankfully this sentence is changing with devices such as Phoenix.

Watch the video below for a demonstration and explanation of this amazing product.

 

 

 

 

source

Anyone that has ever seen the effects of a stroke knows that they can be physically devastating. Within a day, a physically functional person can lose strength to an entire side of their body and face; leaving them dependent on caretakers or suddenly forced to spend a long period in the hospital. Though a stroke is an injury to the brain, whichever part of the brain it affects means that part of the body’s command center has been injured. In effect this severs the signal to the body, leaving muscles without direction.

Due to disuse after a stroke, the muscles will atrophy and fail to function properly, aligning with the common knowledge of “use it or lose it.”

However, if there is something to intervene early, and assist with rehabilitation and movement, it could possibly accelerate the recovery process.

The Rapael Smart Glove by Neofect is a brilliant way to engage stroke patients in movement and monitor progress. By assigning tasks to the user and simultaneously assisting them with the appropriate movements, the Smart Glove retrains the body in proper movement patterns. Through a mathematical analysis, these ‘task-training games’ are also adjusted for the user’s stroke level, ranging from mild to severe.

Though still in the prototype phase, the product is a brilliant solution to assist with the challenges of retraining stroke patients. Oftentimes, though a person wants to carry out a certain movement, they are unable. A product such as this assists with carrying out the planned movement, helping to bridge the injured signal between the mind and body. The system assists with 3 vital movements in upper body mobility: rotation of the forearm, upward and downward bending of the wrist, and opening and closing the hand.

 

 

source

In honor of the now open registration of the Cybathlon, I would like to highlight the Brain Computer Interface (BCI) category, where paralyzed athletes (pilots) will be able to navigate an onscreen race course using only their brains.

For those with injuries that leave them paralyzed from the neck down, recent products have improved the ability to communicate and interact with the surrounding environment. Such products include wearable technology that includes electroencephalography (EEG) sensors, which read signals from the brain through electrodes and transmit theses signals into readable information on a screen. Through Brain Computer Interface systems, a person is able to visualize a task through mental imagery, and these signals are transmitted through EEG into activity on a screen or movement of a device.

One such product that is able to transfer these signals to screen is Enobio. Enobio is ‘a wearable and wireless electrophysiology sensor system for the recording of EEG.’  It is a system which is worn over the head and includes an 8, 20, or 32 electrode system for numerous applications. Brain computer interface is just one of the uses, while other applications include basic research, neuromodulation, medical applications, and biometry. Such a product of course is not limited for those with disabilities, and can be beneficial to many different users.

See the video below to watch users remotely control a dancing robot:

source

One of the problems with technology is that especially when it first becomes available, many of those that would benefit from it cannot afford it. So while there are many new great options becoming available for amputees, those that don’t have access to funds are unable to benefit. This is why when a $50 dollar option for a printed mechanical hand is offered to the medical world, it should be embraced and supported.

The E-Nable project is truly amazing. It is a network of over 1500 volunteers dedicated to helping provide affordable 3D printed prosthetics for those that can otherwise not afford the multi-thousand dollar ticket that many prosthetics cost. From 3D printing companies to robotics companies to doctors, this project has a worldwide growing network of people willing to design and contribute to low cost prosthetics for amputees. Crowdfunding and generous donations have also contributed to the cause.

In addition to listing participants that can contribute resources or services, the site offers a number of open source designs available so that those with access to a 3D printer can print and assemble their own hand and finger prostheses.  Currently Included are more basic options, as well as those with myoelectric capabilities. Each option provides open source software and video tutorials on how to assemble. The various options accommodate different types of amputations, for those at the wrist or fingers. There is even an prosthetic for a partial finger amputation, the Owen Replacement Finger.

I cannot fully describe everything involved in this project, please visit the site.  The project will hold its first conference titled “Prosthetists meet Printers” on September 28th, 2014 at Johns Hopkins Hospital to involve more of the medical community and introduce them to the options that are available to their underprivileged patients. This will include physician Dr. Albert Chi, a renowned trauma surgeon at the hospital who has been involved in the project.

To donate supplies or funds, click here.

Below is a sample of one of the instructional videos available, in this case it is the Cyborg Beast :

 

 

https://i0.wp.com/www.touchbionics.com/sites/default/files/image-gallery/246_touch_bio_260313.jpg

source

Upper body prostheses have definitely come a long way. For those with amputations at the hand or wrist, gone is the time when the only option was a hook or some other horrific replacement. 

Touch Bionics is a company which makes myoelectric prostheses to replace upper body amputations at the hand and wrist. Myoelectric prostheses are a life-altering product which attach at the remaining part of the limb and are triggered my muscle signals from intact muscle. Touch Bionics has a number of products, and has recently updated their i-limb ultra bionic hand to the i-limb ultra revolution, which includes a rotating thumb and four other articulating digits for up to 36 types of grasp. A mobile app allows the control of these grip patterns, which includes 12 possible customized grips. In addition, a silicone skin-like covering is available in a number of colors to allow for improved grasp and a more skin-like feel.

As we know, hands are very complex body parts with multiple joints that are responsible for numerous different movements, functions, and types of grip. To recreate these movements and try to mimic the function of human fingers, particularly the thumb, is quite difficult. While the loss of a hand naturally causes a great disability, a great product such as this allows an individual to perform a multitude of daily task such as tie their shoes, grasp a pen, or use a smartphone.

Watch the video below for more information:

photosource

There is no doubt that robotics is changing and improving the field of healthcare. While there are many brilliant products being introduced in this field, it is the robotic exoskeleton that I personally find the most amazing. To think that one day we can completely eradicate the long term use of wheelchairs for people with neurological injuries and replace them with a wearable robot which allows them to stand and walk is absolutely inspiring.

The Indego is one of these devices. Weighing in at 26 pounds, this modular device comes in 5 pieces and is put on in components over the legs, hips and torso. The light frame of the device allows users to keep it on even while in a wheelchair prior to use. The device responds to weight shifts in order to guide movement. A forward lean allows the device to help users stand and walk, while leaning backward stops movement. Modular components at the hip and legs propel forward movement at the joints once initiated.

Currently only available for research purposes in rehabilitation centers, the website states it anticipates commercial sales in the US in 2016.

See the video below for demonstration and more information:

Being permanently confined to a wheelchair not only limits you for health reasons, but wheelchairs are also a huge physical barrier to traveling between locations. Even if a target destination is coined ADA accessible, logistically getting to and from a location can have so many barriers that it may not be worth the trip. Constantly relying on others for assistance, not being able to speak at eye level, the physical impact of constantly sitting are some of the problems those that are confined to a wheelchair must experience.

Developed a couple of years ago but finally being released for sale on the market sometime this year, Tek Robotics has developed a robotic mobilization device that allows an individual to independently stand, and then mobilize them to a location that may not be wheelchair accessible. Each device supports a person from behind and gently pulls them into standing position, all without the assistance of a second individual. Instead of throwing the body forward as needed to heave someone out of a wheelchair, this battery-operated devices uses a gas spring to help suspend a person in a standing position. The dimensions are thin enough to fit through a regular doorway (it occupies one third the width of a wheelchair, states the website) but also designed for balance even with the narrower base.

Reservations are now being taken for shipment sometime this year. Each unit will cost approximately $15,000. See the video below for more explanation:

 

photo source