Archives for category: cybathlon

source

In the past, having a neurological injury which left someone with quadriplegia was a life sentence. With research and developing technology has emerged new hope for people left with minimal use of their arms and legs after an event such as severe stroke or spinal cord injury. Current applications are combining the use of virtual reality and electrical signals from the brain to increase people’s function and potential through brain-computer interface (BCI).

In light of the upcoming Cybathlon as well as BCI Meeting 2016, I would like to highlight a company creating much opportunity through research and development. g.tec is a biomedical engineering company that both creates products and conducts research for BCI. While many of the company’s products are inspiring and impressive, it is their BCI research system which is brilliant.

In a BCI system, a person is able to control a target by thinking, and thus using the electrical signals from their brain which are converted into electrical signals which a computer can detect and use to perform tasks. This task can either be something on a computer screen such as a game or computer application, or a robotic device which is able to pick up these signals and move in response. Much like our bodies can use our brain as the command center to tell us to pick up a pen using our left hand, a BCI system can potentially do the same, replacing a biological hand with a robotic limb.

In order for someone to control a target with their brain, there must be multiple working components. A person wears a cap with electroencephalography (EEG) electrodes, and can use motor imagery to plan a task. The electrical signals in the brain which occur while the person is planning this activity are picked up up by the EEG electrodes, amplified, and converted to electrical signals which the computer system uses to carry out the task. It is an incredibly complex and amazing feat to connect biological and computer systems seamlessly to carry out a task.

As the g.tec website elaborates, the electrical conversion from human brain to computer leads to a number of amazing applications. There is, for example, a motor rehabilitation system where a system is controlled by thought directing virtual hand activity, allowing users to control a prosthesis, wheelchair, or virtual reality environment with their mind. In essence, a person can think that they are using their right hand to spell out a word, and the computer spells out this word in response.

Another application of BCI which g.tec is working toward researching is motor rehabilitation through virtual limbs. In this system, a user imagines a limb moving, and is able to visualize this limb in virtual form on a screen. In essence, this system would allow someone with left sided paralysis after a stroke to visualize moving their left arm on a screen. This is incredibly valuable for recovery from a neurological event such as stroke, where decreased activity in the brain of controlling a limb can lead to permanent difficulty of extremity control. “Use it or lose it” unfortunately can prove to be an accurate description of limb use after a debilitating stroke.

While this technology is still emerging and by no means has reached its full potential, g.tec presents us with a diverse platform for research and development of products which will have a huge impact on those who are affected by stroke and other neurological injuries. Anyone who has observed someone with such an injury understands the frustration, disappointment, and loss of independence that such an event brings.

The BCI research system is just one of many groundbreaking products that g.tec is developing. Their site outlines many more products which perform a variety of functions, from cortical mapping to assisting people with communication limitations.

source

What makes life meaningful? For me, part of the answer has always been movement. The ability to move forward through situations, to walk, to run. The understanding of the devastation with cessation of movement has allowed me to work with patients to meet their goals in physical therapy. To stop moving is to pause life, and a person shouldn’t have to pause life just because of a change in their physical status.

Cybathlon is fast approaching. It is the culmination of what is great about technology, creativity, and human adaptability: pairing assistive robotic devices with disabled competitors in what will be the first ‘Cyborg Olympics.’ Since first writing of the event 2 years ago, I’ve been eagerly awaiting which products will support the pilots in each of the six disciplines.

The website is now updated, and the event is set with the teams, which include pilots (competitors) and the respective assistive robotic technologies which they will be using for the race. I’m looking forward to exploring and writing of the different technologies which the pilots will be using.

Beyond just the competitions, however, Cybathlon aims to connect academia, industry and the general public while bringing awareness to the issues surrounding those with disabilities. The event was created by a professor of ETH Zurich to connect these realms, and prior to the event there will also be a synopsium where researchers and experts will be able to discuss the technology surrounding the event.

Truly Cybathlon is amazing, from inception to organization. The event provides a platform not only for the athletes, but also for researchers and creators. The goal here is not opportunism, but rather progress and communication. From here, there can only be further advancement of human movement for those with disabilities.

source

In honor of the now open registration of the Cybathlon, I would like to highlight the Brain Computer Interface (BCI) category, where paralyzed athletes (pilots) will be able to navigate an onscreen race course using only their brains.

For those with injuries that leave them paralyzed from the neck down, recent products have improved the ability to communicate and interact with the surrounding environment. Such products include wearable technology that includes electroencephalography (EEG) sensors, which read signals from the brain through electrodes and transmit theses signals into readable information on a screen. Through Brain Computer Interface systems, a person is able to visualize a task through mental imagery, and these signals are transmitted through EEG into activity on a screen or movement of a device.

One such product that is able to transfer these signals to screen is Enobio. Enobio is ‘a wearable and wireless electrophysiology sensor system for the recording of EEG.’  It is a system which is worn over the head and includes an 8, 20, or 32 electrode system for numerous applications. Brain computer interface is just one of the uses, while other applications include basic research, neuromodulation, medical applications, and biometry. Such a product of course is not limited for those with disabilities, and can be beneficial to many different users.

See the video below to watch users remotely control a dancing robot:

The age of robotics has created a new kind of athlete, and the possibilities are quite amazing. 2016 will mark the first Cybathlon, to be held in Switzerland. This will be a competition for parathletes, called “pilots,” using robot-assisted technology. The competition is an Olympics-style event, featuring six different competitions, or “disciplines.” Each discipline features pilots with a specific category of injury using an appropriate device. In this competition, both the pilots and robotics companies are allowed the opportunity to win a prize. This competition is not only a victory for the advancement of robotics beyond basic function, but more importantly for athletes with life altering injuries such as amputations and spinal cord injuries.

The first competition will is an “Arms Prosthetic Race,” which features two events. Those with amputation of the arms using upper body bionic prosthetics to complete a two hand course using a loop around a wire, and a “SHAP course ADL” which is an upper body obstacle course requiring pilots to perform a series of tasks, grasping different kinds of objects in order to progress to the next.

The second discipline is a BCI (brain computer interface) race, in which participants mentally race avatars through a variety of obstacle courses. This discipline is for those with spinal cord injury at neck level, which has left them paralyzed from the neck down.

The discipline close to heart, however, is the “Powered Exoskeleton Race.” Did we ever think we would see a day when athletes with spinal cord injuries leaving their lower body without motor control would run in an Olympic-style event? This discipline will feature an obstacle course including stairs, ramps, slopes, narrow beam and others, ending in a final sprint. Wow.

For those with spinal cord injuries leaving their trunk and upper body motor control intact, Discipline three features an FES (Functional Electrical Stimulation) bike race. An FES bike assists lower body movement while the trunk and arms work to help control the bike around a race course.

A Leg Prosthetics Race and Powered Wheelchair Race comprise two other disciplines for those with lower body injuries.