What if there was a device which allowed amputees to feel their limbs again?

The loss of a limb or damage of the nerves that travel through our bodies can greatly diminish the human experience. The sensory system dictates how we respond to our environment, transmitting signals to and from our brains so we can move and feel. Pain, pressure, and temperature response are just some of the functions of the somatosensory system connected to our skin, allowing us to experience the world. In addition, our nerves have a motor component, sending signals from the brain to our muscles, telling them to work so we can move and perform tasks.

Nerves function much like electrical wires, transmitting signals between the brain and areas of stimulus, like an electrical wire between a socket and device. It is this electrical current which causes signals to be transmitted. After an amputation, the nerve is severed, not only disrupting the flow of a nerve signal, but also sometimes leaving amputees with a cruel phantom limb pain, as if the limb was still there. For those with limbs still intact who suffer from nerve damage, the physical limb remains, but its function is diminished without the motor and sensory signals being transmitted.

SENSY by Sensars is almost unbelievable in the amazing feat that it has sought to achieve, allowing amputees and those with nerve damage to feel again. Artificial sensors are implanted to connect to intact nerves, stimulating response in the brain as if there was an intact nerve in a limb. The sensors are connect to wires simulating an actual nerve, and those wires are implanted and connected to actual nerves within the body. Between the artificial sensors  and the residual nerve is an implantable neurostimulator which is bidirectional, sending and receiving signals from both the intact nerve and the artificial sensors.

The versatility of SENSY is also amazing. The company has a multi-functional product which targets both amputees and those with intact limbs who have nerve damage. There are 3 options, but the flow of information is essentially the same. A sensor (either from artificial skin, glove/sock, or “pacemaker”) sends a signal to a controller which is able to activate that signal to an implantable neurostimulator, which causes an electrical signal to communicate with the intact nerve. Once that communication is made, the connection is made between the artificial and biological part of the nervous system, and feeling is processed in the brain.

For amputees, Sensar has sought to decrease phantom limb pain and increase sensory feedback through sensors with a neuroprosthetic device which includes artificial skin. As we know, skin is very sensitive, and in this case will contain sensors which will prompt the prosthetic device to send signal through the artificial nervous system.

For those with intact limbs. the company is designing socks and gloves for those with upper and lower limb nerve damage. These socks and gloves contain sensors within the fabric which act essentially as sensitized skin, also sending signals to an implanted device which communicates with the intact nerves.

Finally, for those with an amputation but without prosthesis, the company has created an implantable pacemaker, essentially an excitable device like a sensor which also sends a signal to the nerve.

Go to the website to read about the full and brilliant description of this product, and watch the video for a visualization of how the artificial sensors are able to communicate with an intact nerve.Still in the prototype phase and not yet available for sale, SENSY will truly impact people’s lives once it is on the market.



The human ability to grasp objects is an amazing feature of our bodies which we seamlessly integrate into our daily lives. Google is conducting research on how to replicate this feature, and as expected, replicating what we do easily is not so simple.

This post will not highlight a specific product but I would like to review a few important terms and concepts, as so much of robotics is currently shifting toward replicating what we can do with our hands.

Stereognosis: When you reach into your bag and look for your wallet, how do you determine, in seconds, that it is your wallet without having to look at it? Now, when you look for a coin in the wallet, how do you know that you are about to pull out a dime versus a penny? The concept of being able to recognize 3D objects with the sensory feedback from our hands is stereognosis. We know what we are holding without having to use visual cues. It’s phenomenal, and extremely difficult to reproduce due to the involved sensory and neural feedback that is required.

Weight anticipation:  Anticipation of forces is a very important concept in lifting and grasping. You may go through the same motion of lifting a heavy suitcase or a light grocery bag, but the amount of force that you recruit will be very different. Without much effort, we size objects up before we lift them and our brains tell our muscles to recruit the appropriate amount of force to move something. It is how we conserve energy; you don’t need the full force of your bicep to lift a light pencil. It is also how we move efficiently and save our body from injury.

In robots, this anticipation is difficult due to the limited experience, vision, and the possibly simple neural network of a robot.

Grasp: The human ability to use our fingers to pick something up is complicated and involved. Our precision, ability to use tactile cues, the involved sensation and neural network connected to our skin, and our quick ability to adapt and respond to objects means that a seemingly simple task is actually very difficult for a robot to replicate.

Robotics is currently in a very exciting time, with the applications for robotics growing. And as we use more products to enhance our work and daily activities, we find that we are the models and gold standard for the products being created.




One of the most exciting aspects of current robotics is the amenability and exchange of ideas that can occur with a single product. Both the remarkable ideas and communities that are created are very exciting.  I discussed this previously, specifically for open source 3D printing in prosthetics for the 3-D Heals community.

But, what if an intelligent arm could be programmed to carry out a wide array of tasks? KATIA from Carbon Robotics is designed for just this, to be to a functional, affordable robot with an open platform to allow versatility. The company has 3D printing and a camera as functions in mind, but is opening up its creator space to the community to give the intelligent arm more functions.

KATIA is, according to the site, ‘Kickass, Trainable, and Intelligent.’ The trainability is a very unique feature, as it appears that once the arm is guided through a motion, it can recall the same motion with ease. Designed with motion sensors and attachments in mind, the possibilities of KATIA are great, with possibly huge implications for those needing extra assistance in daily tasks.

Go to the site for updates with this project, and contribute ideas if you are a developer that would like to take part of its growth.

More details in the video below:



Anyone that has been witness to a person with Parkinson’s knows the debilitation that the physical effects of the disease can bring. As the disease progresses, individuals with Parkinson’s Disease  develop tremors, repetitive involuntary movements in the hands caused by declining circuitry between the brain and muscles. These tremors are not only physically uncomfortable, but make it extremely difficult to use the hands to perform regular gross and fine motor tasks such as eating, writing, grooming, and dressing. A type of tremor particularly characteristic to the disease is a “pill-rolling” tremor, a constant involuntary rubbing between the index finger and thumb as if one was rolling a pill..

Unfortunately, the physical manifestations of the neurological disease only worsen with time.

A brilliant product named GyroGlove, however, has been created to help offset the constant involuntary movements. Gyrogear has created a glove which uses gyrotonics to stabilize shaky hands by countering the force ‘instantaneously’ and ‘proportionately.” This is simple and amazing. Like a spinning top that wants to stay upright, the gyroscope within the glove works constantly to balance out the unnecessary movements of the tremors as they occur, stabilizing the hand.

Though the product has not yet launched, GyroGlove is certain to improve the life of those so handicapped by tremors. Those that are interested in volunteering to test the product or subscribing for updates should visit the site.







Anyone that has ever seen the effects of a stroke knows that they can be physically devastating. Within a day, a physically functional person can lose strength to an entire side of their body and face; leaving them dependent on caretakers or suddenly forced to spend a long period in the hospital. Though a stroke is an injury to the brain, whichever part of the brain it affects means that part of the body’s command center has been injured. In effect this severs the signal to the body, leaving muscles without direction.

Due to disuse after a stroke, the muscles will atrophy and fail to function properly, aligning with the common knowledge of “use it or lose it.”

However, if there is something to intervene early, and assist with rehabilitation and movement, it could possibly accelerate the recovery process.

The Rapael Smart Glove by Neofect is a brilliant way to engage stroke patients in movement and monitor progress. By assigning tasks to the user and simultaneously assisting them with the appropriate movements, the Smart Glove retrains the body in proper movement patterns. Through a mathematical analysis, these ‘task-training games’ are also adjusted for the user’s stroke level, ranging from mild to severe.

Though still in the prototype phase, the product is a brilliant solution to assist with the challenges of retraining stroke patients. Oftentimes, though a person wants to carry out a certain movement, they are unable. A product such as this assists with carrying out the planned movement, helping to bridge the injured signal between the mind and body. The system assists with 3 vital movements in upper body mobility: rotation of the forearm, upward and downward bending of the wrist, and opening and closing the hand.




The abilities of an athlete are often something rather superhuman; more than what an ordinary person can acheive. Thus it’s a very interesting concept by Chris Mann to turn the elements of the endoskeleton into an exoskeleton in a project named Human Quarter-Mile, mimicking the energy and propulsion function of our muscles and tendons in a 3D printed hardware format. As the worlds of 3D printing for healthcare and fitness technology move forward, there will be more and more crossover between between the two. This may be the example of such the case. As it is now, this project is an innovative, long researched, and well executed design to enhance what is already present the body.

To mimic the muscles, tendons, and nervous input from the body, 3D printed reinforcements are individualized where the place of these structures are beneath our skin. A shoe mimics the intricate network of musculotendonous structures that make up your individualized limb; after measurements each product is printed for the individual. A testament to the design is that in test it did not fall apart during running, when approximately 2.5 times your body weight is forced into each limb. The ‘shoe’ is described as an “energy storage and release/delivery system,” mimicking how the process of energy is released through musculotendonous structures in our own systems.

This amazing product is still in the development phase, accepting donations to further the project.

Please watch the video below for an insight into the intricate assembly of the frame:

<p><a href=”″>HQM_Introduction</a&gt; from <a href=””>Christopher Mann</a> on <a href=””>Vimeo</a&gt;.</p>

For those with neurological injuries which affect the use of both their arms and legs, options can be limited for assistive devices to help with ambulation. Those with paralysis in their legs who still have control of their arms can use their upper extremities to assist with balance or propulsion such as in wheelchairs or more advanced robotic devices. Those with loss of control of both upper and lower extremities, however, such as in the case of cervical level spinal cord injuries or diseases such as ALS have much more limited options. Even if a device were to allow a quadriplegic person to stand, it would be difficult for them to advance their movement.

This is part of the reason why the BCI exoskeleton developed by Korea University and TU Berlin is so groundbreaking and amazing. An EEG cap allows the user to focus on flickering LED lights, each at a different frequency with a different command. The commands are: walking, turning left, standing, turning right, and sitting. A visual focus on one of these commands by the user is received by the EEG cap and changes the action potential to trigger a response for movement by the exoskeleton. This mirrors the response of muscles in our own system, it is the change in voltage which causes the nerves to send signals to muscles to contract for desired movement.

Truly, this exoskeleton is brilliant in the research and innovation behind the product. Please read the full paper that was published for the hard work and consideration that went into this project. While this is a research phase of design, hopefully this is a viable product that will become available to the general public soon.



While we don’t normally consider them much until they are injured, our hands are extremely complex and multifunctional, allowing us to carry out the numerous tasks of our day. Truly then, the evolving nature of bionic hands is amazing, getting closer and closer to mimicking the real thing. Saarland University is developing a bionic hand with bundles of smart wires that mimic the bundles of muscle fibers that comprise our muscles. In addition, these bionic hands have sensors built into the wires, much like our our own muscles, which have a ‘shape memory’ and can make precise movements similar to our own hands. This is a huge step toward solving the mechanical problem in prosthetics of trying to match the fine motor movements of a regular anatomical hand.

Though there is no official site for this product yet, the university outlined some of the amazing features of their project in a press release. The combined ‘shape memory’ and bundling of the smart wires also allows heat to be dissipated faster throughout the muscle-like complex, and as heat is energy this allows faster and more precise movements in the hand. The built in sensors in the smart wires also have a position sense, much like the receptors in our own hands that detect a change in position. This is how we know what position our hand is in without having to look at it. These small, but important features are the reason why this project, when it moves forward from the prototype phase, will provide great benefit for its users.

Grip Glove


The Wyss Institute at Harvard has many amazing projects, one of which currently is the soft robotic glove. Certain neurological diseases leave many patients with so much weakness and lack of motor control in the hands that they become limited in performing simple daily tasks such as grasping, holding, and lifting objects. These are activities that we often do mindlessly throughout the day, such as brushing our teeth, and as our need for fine motor tasks is so constant that we often do not give this much consideration.

Diseases such as muscular dystrophy, ALS, and incomplete spinal cord injuries can limit the neurological input to the muscles of the hand, decreasing a person’s strength and function. A disease that causes a lack of strength and progressive loss of motor control in the hands leaves its subjects essentially disabled, unable to hold even a cup without dropping it.

The soft robotic glove was developed with these kinds of diseases in mind, and fortunately also kept in mind was the ease of use and comfort for its user. A soft robotic is more flexible and able to mimic natural human movement much better than bulky and rigid external hardware. The motors in the Soft Robotic Glove rather mimic the grasping and fine motor tasks of a healthy hand/wrist complex, allowing more natural motion and improved grip. Much research was put into this project for actuators and sensors that mimic human force, pressure and grip to help clients restore some natural function of their hands.

Still in the development phase and not yet for sale on the market, please watch the video below for more information and insight on this amazing product.

Image result for liftware


Tremor is an involuntary movement of the hands, normally caused by some type neurological dysfunction. This can be seen in diseases such as Parkinson’s disease or stemming from unknown causes, such as with essential tremor. When this involves intentional tremor, the more focused your activity is, the worse the tremor can become. and it can feel like the curse of movement. For those with Parkinsonian or essential tremor, difficulty performing simple daily tasks such as eating are a constant challenge as a person struggles to complete a simple task such as keep food on a fork.  While we don’t think about it usually, the act of balancing food on a utensil and bringing that food to your mouth requires accuracy and precision that is difficult to achieve when your hand is increasingly shaking. Recently acquired by Google, Liftware has created a spoon with a motor and sensors which addresses this problem by steadying the spoon as it is brought to the mouth. Designed for helping in holding, eating, and transferring tasks, Liftware has shown to decrease tremor amplitude by up to 76%. This is huge for someone whose hand shakes so badly when they are eating that they are unable to place food in their mouth, and allows for a smoother transition of both bringing food from plat to mouth, as well as transferring the food from utensil to mouth. Liftware works by activating the sensors in the spoon and using them to turn on a motor which helps the spoon counteract the movement of the tremor. Essentially, the spoon detects unnecessary movement, and tries to cancel it out by moving in the opposite direction. Simple, and amazing. Best fit for mild to moderate tremors, Liftware is available for purchase through their website. The entire kit comes with a handle, soup spoon attachment, charger and pouch. Other attachments are available for purchase as well through the site. Watch the video below for a demonstration.