Archives for posts with tag: robotics

Grip Glove

source

The Wyss Institute at Harvard has many amazing projects, one of which currently is the soft robotic glove. Certain neurological diseases leave many patients with so much weakness and lack of motor control in the hands that they become limited in performing simple daily tasks such as grasping, holding, and lifting objects. These are activities that we often do mindlessly throughout the day, such as brushing our teeth, and as our need for fine motor tasks is so constant that we often do not give this much consideration.

Diseases such as muscular dystrophy, ALS, and incomplete spinal cord injuries can limit the neurological input to the muscles of the hand, decreasing a person’s strength and function. A disease that causes a lack of strength and progressive loss of motor control in the hands leaves its subjects essentially disabled, unable to hold even a cup without dropping it.

The soft robotic glove was developed with these kinds of diseases in mind, and fortunately also kept in mind was the ease of use and comfort for its user. A soft robotic is more flexible and able to mimic natural human movement much better than bulky and rigid external hardware. The motors in the Soft Robotic Glove rather mimic the grasping and fine motor tasks of a healthy hand/wrist complex, allowing more natural motion and improved grip. Much research was put into this project for actuators and sensors that mimic human force, pressure and grip to help clients restore some natural function of their hands.

Still in the development phase and not yet for sale on the market, please watch the video below for more information and insight on this amazing product.

Silver nanowire sensors hold promise for prosthetics, robotics

source

As wearable technology progresses, monitoring activity using these devices will require more accuracy as the user interacts with the environment. From fitness trackers to prosthetics, a wearable robotic device is extremely useful if its user is able to interact and gain feedback from its use. At North Carolina State University, researchers developed a silver-based nanowire sensor to monitor changes in pressure, finger touch, strain, and bioelectronic changes. As described in the study, the sensor involves a material placed between two conductors. The silver wires are the conductors, while the material in the middle is Ecoflex silicone and serves as the electric insulator. These sensors are moveable, stretchable, and respond to pressure changes in real time, within 40 milliseconds. Between these two layers an electric charge is stored, and as the sensor is stretched or deformed in any way, this change is interpreted as energy and measured.

The movements which these sensors are able to detect are walking, running, and jumping from squatting. For use in robotics devices such as exoskeletons and prosthetics, this information will become invaluable as the user will need this information in order to interact with the environment for safety and feedback purposes. The sensors can be used to ‘feel’ the environment, as well as to monitor movement and activity. For those with robotic prosthetic devices, these sensors can be used to provide important feedback to retrain the body and provide kinesthetic feedback.

One of the unique attributes of these sensors is their ability to deform and change shape with movement, as they can stretch up to 150% of their original shape.

source

3D printing is truly changing healthcare, allowing us to print everything from hearts to skulls to exoskeletons to hands. This revolution has paved the way for making replacement limbs for amputees financially accessible. In England, a young roboticist has made it his mission to begin a project to provide a low cost, open source 3D design kit for those with missing hands. Through crowdfunding, Joel Gibbard of Open Bionics was able to create a low cost robotic hand kit, including designs for both a robotic myoelectric hand and a prosthetic hand.

The robotic hand is titled the Adams Hand, using electric motors to replace muscles and steel cables to replace tendons. Movement of the intact muscles of the forearm and wrist enable synergistic movement of the device, meaning that an action such as bending the wrist would engage the bending of the 3D fingers and hand. With grabbing an item, the fingers stop once there is an object impeding their movement. Thus, the hand is able to master the task of grasping a fragile, uneven object such as an egg.

The project is geared both toward amputees and researchers for use in advancing the field of robotics.

A DIY kit includes Adams Hand, Servo, Wrist (with generic connector), wire tendon, mounting screws, servo horn, and instruction manual.  A price is not yet set. Please see the video below.

As technology and the 3D printing boom in healthcare moves ahead, it’s inspiring to see that some are still thinking of people that may not have access to all the great healthcare opportunities that come with more resources.

source

A lightweight wearable robot which subtly assists with human movement? The amazing innovation of wearable technology cannot be achieved without intelligence, countless hours of work, and years of research by those behind the products. Boosted by a recent DARPA grant, Harvard’s Wyss Insititute is developing a Soft Exosuit to assist with walking with the use of textiles and wearable sensors. While not yet a completed product for the market, it is already clear how this wearable robot can potentially change the lives of those with neurological disorders, muscle weakness, the elderly, and those that are fatigue-prone in professions such as the military and first responders.

The components of this product are amazing, especially in their consideration to avoid interference of the device with the user. Elastic textiles that align with certain muscle groups and transmit forces to the body to assist with natural, synergistic movement during gait. Because the textiles are elastic and are unable to measure angles at joints (as rigid components do normally), wearable sensors at the hip, calf and ankle monitor forces and changes in movement. The idea is to provide assistive torque at the joints to mimic normal muscle activity when needed. The sensors track the changes in movement to monitor the types of activities of the user, such as walking or running, to assist with the diversity of everyday activity.

Something especially interesting about the Exosuit is how closely it works with human physiology and biomechanics during gait, including the passive movement of the limbs during walking. Because the functional textiles stretch, they can closely align with muscle groups and assist movement without letting the components interfere with what is natural for the body.

Please see the video below for more:

source

Printing is currently extremely inconvenient if you do not have regular access to a printer. Which is why it is so exciting that a mobile printer is in production and will be available for sale as early as next year. The Zuta Labs Mini Mobile Robotic Printer is a 10 x 11.5 centimeter pocket printer which is essentially an inkjet that rolls over whichever paper on which you need to print. The printer just needs a wireless connection, and can be recognized on computers as a regular printer. It supports iOS, Android, Linux, and Windows. The mobile printer is designed to start at the top of the page, and an inkjet rests on multidirectional wheels in order to cover the surface on which it is printing.

The Pocket Printer’s Kickstarter page has met its goal, but is still accepting backers in order to add more features.

See the videos below for a demonstration of how the device will look when it is working and their informational Kickstarter video:

 

For those with diminished strength or function of the hand, daily tasks that we often take for granted may become difficult, essentially disabling someone in their daily life. To address this and increase efficiency of the performance of the hand, researchers at MIT have developed “Supernumerary Robotic Fingers,” a type of wearable robotic device with two extra fingers to complement the grasping function of a regular hand.

In normal human movements we have muscles that work synergistically, meaning that there is a central signal from the brain that allows them to contract together to create a certain movement. For example, when the biceps contracts to bend the elbow, the muscle brachialis contracts as well to help facilitate this movement. This allows for efficiency of tasks in our body.

An article titled Bio-Artificial Synergies for Grasp Postural Control of Supernumerary Robotic Fingers explains how the researchers have developed an algorithm to allow the robotic fingers to work synergistically with human hands. That is, the extra fingers are designed to correlate with the human movements to work as an extension of the human hand and enhance activity to form essentially a seven-fingered hand. The researchers use the concept of “Bio-Artificial Synergy.” Thus, the researchers have essentially developed extra fingers that replicate the movements of muscles in the human hand.

The device is mounted on the wrist, and through a sensor glove receives a signal from the hand and works alongside the five fingers to assist with grasping objects. The robotic fingers are longer than human digits, making it easier to grasp larger objects. Each robotic finger can move in 3 different directions. For those that have difficulty holding onto objects or performing coordinated movements, this can be an invaluable tool to perform tasks independently.

Because of these extra fingers, the user is able to perform tasks that are normally difficult to perform single-handedly, such as twisting open a bottle cap, holding a tablet and typing, This product is still in the development phase, and though researchers have amazingly been able to correlate the robotic hand angles with human hand angles for grasp, they have not yet completed algorithms for fingertip forces.

The article mentions that this devices has implications not only for elder care, but for construction and manufacturing.

See the video below for more description of this amazing device:

photo source

 

 

source

As our rate of multitasking increases, we may as well embrace the age of interactive robots in our home. Crowd-funded JIBO by Cynthia Breazeal is a personal robot with a variety of functions. According to the website, JIBO can see, hear, learn, help, speak and relate. It is a personalized robot that can take orders, tell interactive stories, make video calls, and sense social and emotional cues to respond appropriately to its user. As you walk around a room, it has enabled face recognition and responds to you appropriately. While we have seen components of these in other devices, JIBO is more of a polished home companion that can interact both with other devices and humans.

Available at the end of 2015, can be pre-ordered for $499.

See the promotional video below: